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ABSTRACT. This paper reports on a significant advance in the area of non-
reflecting boundary conditions (NRBCs) for unsteady flow computations. As
a part of the development of the space-time conservation element and solution
element (CE/SE) method, sets of NRBCs for 1D Euler problems are developed
without using any characteristics-based techniques. These conditions are much
simpler than those commonly reported in the literature, yet so robust that
they are applicable to subsonic, transonic and supersonic flows even in the
presence of discontinuities. In addition, the straightforward multidimensional
extensions of the presnt 1D NRBCs have been shown numerically to be equally
simple and robust. The paper details the theoretical underpinning of these
NRBCs, and explains their unique robustness and accuracy in terms of the
conservation of space-time fluxes. Some numerical results for an extended
Sod’s shock-tube problem, illustrating the effectiveness of the present NRBCs
are included, together with an associated simple Fortran computer program.
As a preliminary to the present development, a review of the basic CE/SE
schemes is also included.

1. Introduction

Because of computing resource limitation and other considerations, it is often
required that the computational domain used in a flow simulation represent only
a subdomain of a larger physical domain. To obtain a numerical solution that
closely resembles the physical flow field in this subdomain, ideally the conditions at
the computational boundary should be specified using the physical flow conditions
there. Unfortunately, these conditions generally are not known without first solving
the larger physical flow field.

Despite the above difficulty, with proper boundary treatments, an accurate
simulation of the physical flow over a subdomain using a computational domain
that covers only the subdomain is possible if certain conditions are met. As an
example, assume that flow disturbances are generated within the subdomain while
no disturbances enter it from outside. For this case, an accurate numerical solution
over the subdomain can be obtained by imposing proper nonreflecting conditions at
the computational boundary. These nonreflecting boundary conditions (NRBCs)
are designed such that flow disturbances can propagate out of the computational
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domain smoothly without inducing substantial spurious reflections from the bound-
ary. Such reflections can distort the computed solution and render it completely
useless.

Design and application of NRBCs have been a research topic for a long time [1-
8]. In the following, we describe three main established approaches for implemeting
NRBCs.

The first approach is based on 1D characteristic decomposition of flow vari-
ables and it is most suitable when the waves propagate toward the boundary in
the normal direction. Engquist and Majda [1] express the nonreflecting boundary
condition as the requirement that the local perturbation propagating along the
incoming characteristics be made to vanish. In practice, this consists of project-
ing the flow equations onto the normal direction of the boundary, converting the
conservative variables to characteristic variables, finding the characteristics that
enter the domain, and finally setting the corresponding characteristic variables to
zero. Although such a procedure is delicate and tedious, it still represents the most
commonly used nonreflecting boundary treatment [2,3,5]

The second approach is based on the far-field asymptotic solutions [4] and it is
ideal when the mean flow near the boundary is nearly uniform.

In the third approach [6-8], efforts are made to insure that the disturbances in
the buffer zone that lies outside the computatinal boundary will not reflect back
into the computational domain. The most recent development in this area is the
so called perfectly matched layer (PML) method [7].

Generally speaking, the established methods described above are not designed
for flow problems involving shocks and contact discontinuities. Furthermore, their
implementation generally requires a considerable effort.

As an integral part of the development of the space-time conservation element
and solution element (CE/SE) method [9-40], several sets of NRBCs for 1D Euler
problems will be derived in this paper using a nontraditional concept based entirely
on a simple assumption about the space-time flux distribution in the neighborhood
of a spatial boundary. As such, the derivation of these NRBCs is consistent with
the two basic tenets [15, p. 89] of the CE/SE development, i.e., (i) to capture
physics more efficiently and realistically, the modeling focus should be placed on
the original integral form of the physical conservation laws, rather than the differ-
ential form (which follows from the integral form under the additional smoothness
assumption); and (ii) to simplfy mathematics, the use of any elaborate partial dif-
ferential equation theory should be avoided as much as possible. As will be shown,
the derived NRBCs are indeed very simple (e.g., the solution values at a boundary
mesh point are simply taken from those at a neighboring interior mesh point), and
yet so robust that they are applicable to subsonic, transonic and supersonic flows
even in the presence of discontinuities. In addition, as will be described further in
Sec. 6, the straightforward multidimensional extensions of the present 1D NRBCs
have been shown numerically to be equally effective and robust.

The space-time CE/SE method is a high-resolution and genuinely multidimen-
sional method for solving conservation laws. It is not an incremental improvement
of a previously existing method, and it has many nontraditional features. They
include: (i) a unified treatment of space and time, (ii) the introduction of con-
servation elements (CEs) and solution element (SEs) as the vehicles for enforcing
space-time flux conservation, and (iii) a time marching strategy that has a space-
time staggered stencil at its core and, as such, can capture shocks without using
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Riemann solvers. Note that conservation elements are nonoverlapping space-time
subdomains introduced such that (i) the computational domain can be filled by
these subdomains; and (ii) flux conservation can be enforced over each of them
and also over the union of any combination of them. On the other hand, solution
elements are nonoverlapping space-time subdomains introduced such that (i) the
boundary of any CE is covered by a combination of SEs; and (ii) any physical flux
vector is approximated using simple smooth functions within a SE. In general, a
CE does not coincide with a SE.

Without using preconditioning or other special techniques, since its inception
[9] the CE/SE method has been used to obtain numerous highly accurate 1D,
2D and 3D steady and unsteady flow solutions with Mach numbers ranging from
0.0028 to 10. The flow phenomena modeled include traveling and interacting shocks,
acoustic waves, shedding vortices, shock/boundary-layer interaction, detonation
waves, cavitation and hydraulic jump. In particular, the rather unique capability
of the CE/SE method to resolve both strong shocks and small disturbances (e.g.,
acoustic waves) simultaneously [19,21-26] makes it a unique tool for attacking the
problems in computational aeroacustics (CAA). Note that the fact that the (second
order) CE/SE method can solve CAA problems accurately is an exception to the
commonly-held wisdom that a second-order scheme is not adequate for solving
CAA problems. Also note that, while numerical dissipation is required for shock
capturing, it may also result in annihilation of small disturbances. Thus a solver
that can handle both strong shocks and small disturbances simultaneously must be
able to overcome this difficulty.

The rest of the paper is organized as follows: A brief description of the CE/SE
method is provided in Sec. 2. The concept of generalized conservation elements
is introduced in Sec. 3. Using the preliminaries given in Secs. 2 and 3, several
sets of NRBCs are derived in Sec. 4. Numerical results that validate the derived
NRBGCs are given in Sec. 5. The concluding remarks are given in Sec. 6. Finally,
to give the reader a concrete example about the simplicity and robustness of the
CE/SE method in general and the the current NRBCs in particular, a short Fortran
program for solving an extended Sod’s shock tube problem with a set of NRBCs
imposed at its two open ends is listed in Appendix.

2. Review of the CE/SE method

As an example, the 1D CE/SE method will be described by considering the
PDE

(2.1) - ta;—=0

where a is a constant. Let 1 = x, and 2 = ¢ be considered as the coordinates of
a two-dimensional Euclidean space Es. Then, by using Gauss’ divergence theorem
in the space-time Fs,, it can be shown that Eq. (2.1) is the differential form of the
integral conservation law

(2.2) ?{ h-dg=0
S(V)

As depicted in Fig. 1, here (i) S(V) is the boundary of an arbitrary space-time
region V in E,, (ii) h = (au,u), and (iii) d§ = do 7 with do and 7, respectively,
being the area and the unit outward normal of a surface element on S(V). Note
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that: (i) because h - d is the space-time flux of h leaving the region V through
the surface element d3, Eq. (2.2) simply states that the total space-time flux of /
leaving V' through S(V') vanishes; (ii) in E», do is the length of a line segment on
the simple closed curve S(V); and (iii) all mathematical operations can be carried
out as though FE, were an ordinary two-dimensional Euclidean space.

To proceed, let Q denote the set of all space-time staggered mesh points (j,n)
in Ey (dots in Fig. 2(a)), where n = 0,£1/2,+1,4+3/2,%2,..., and, for each n,
j=n+t1/2,n+3/2,n+t5/2,.... Each (j,n) € Q is associated with a solution
element, i.e., SE(j,n). By definition, SE(j,n) is the interior of the space-time
region bounded by a dashed curve depicted in Fig. 2(b). It includes a horizontal
line segment, a vertical line segment, and their immediate neighborhood.

For any (z,t) € SE(j,n), u(z,t) and ﬁ(:c,t), respectively, are approximated by

* ; def n n n n
(2.3) u*(z,t;55,n) = uj + (ug)j (@ —x5) + (ug) (¢ — ")
and
(2.4) R (@, t55,m) = (au* (2, ¢;4,n), u* (,t;4,n))

Note that (i) u}, (uz)?, and (u)} are constants in SE(j,n), (ii) (z;,t") are the
coordinates of the mesh point (j,n), and (iii) Eq. (2.4) is the numerical analogue
of the definition & = (au, u).

Let u = u*(zx,t;j,n) satisfy Eq. (2.1) within SE(j,n). Then one has (u;)? =

J
—a (ug)}. As aresult, Eq. (2.3) reduces to
(25) U*(.'L‘,t;j,’l’b) :u]n"_(uz)? [(SE—.’L'J‘) _a(t_tn)]a (SL',t) € SE(J)”)

Le., u} and (uz);‘ are the only independent marching variables associated with
(4, ).

Let Es be divided into nonoverlapping rectangular regions (see Fig. 2(a)). As
depicted in Figs. 2(¢)-2(e), (i) two such regions, i.e., CE_(j,n) and CE,(j,n), are
associated with each interior mesh point (j,n) € Q; and (ii) CE(j,n) is the union
of CE_(j,n) and CE,(j,n).

Note that, among the line segments forming the boundary of CE_(j,n), AB and
AD belong to SE(j,n), while CB and C'D belong to SE(j —1/2,n—1/2). Similarly,
the boundary of CE (j,n) belongs to either SE(j,n) or SE(j +1/2,n—1/2). As a
result, by imposing two conservation conditions at each (j,n) € Q, i.e.,

(2.6) 74 h*-ds=0, andyf h*-ds=0, (j,n) €N
S(CE4(j,n)) S(CE_(j.m))

and using Egs. (2.4) and (2.5), one can obtain two equations for the two unknowns
u? and (uz)}. By solving these equations, one has (i)

(2.7)
n_ 1 n-1/2 n-1/2 n-1/2 n-1/2
A} {(1 +v)uiTyjy + (L= v)ugy s + (1= 0) [(u;f)j,m - (“;r)j+1/2]}

and, assuming 1 — v? # 0, (ii)

n 1 n— n— n— n—
(28) @by =3 [upifs — iy — =@ — @]
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Here, (i) v def aat/Az, and (ii) for any (j,n) € Q,

A

(2:9) W)} )]
Note that derivation of Egs. (2.7) and (2.8) can be facilitated by the following
observations: because u*(x,t;j,n) is linear in x and ¢, it can be shown that the
total flux of h* leaving CE_(j,n) or CE.,(j,n) through any of the four line segments
that form its boundary is equal to the scalar product of the vector R* evaluated at
the midpoint of the line segment and the “surface” vector (i.e., the unit outward
normal multiplied by the length) of the line segment.

The a scheme [9,11,17], the explicit nondissipative CE/SE solver for Eq. (2.1),
is formed by Egs. (2.7) and (2.8). Because, for any (j,n) € 0, the total flux of R*
leaving each of CE_(j,n) and CE4(j,n) vanishes (see Eq. (2.6)), CE_(j,n) and
CE,(j,n), (j,n) € Q, will be referred to as the conservation elements (CEs) of the
a scheme. In addition, because the surface integration over any interface separating
two neighboring CEs is evaluated using the information from a single SE, obviously
the flux leaving one of these CEs through the interface is the negative of that leaving
another CE through the same interface. As a result, the local conservation relations
Eq. (2.6) lead to a global flux conservation relation, i.e., the total flux of R leaving
the boundary of any space-time region that is the union of any combination of
CEs will also vanish. In particular, because CE(j,n) is the union of CE_(j,n) and
CE+ (.77 ’I’L),

(2.10) 7{ h*-ds =0, (j,n) € Q
S(CE(j,n)

must follow from Eq. (2.6). In fact, it can be shown that Eq. (2.10) is equivalent
to Eq. (2.7).

In addition to the nondissipative a scheme, there is a family of dissipative
CE/SE solvers of Eq. (2.1) in which only the less stringent conservation condition
Eq. (2.10) is assumed [11]. Because Eq. (2.10) is equivalent to Eq. (2.7), for each of

these schemes, 7 is still evaluated using Eq. (2.7) while (u;})? is evaluated in terms

of ugzll //22 and (uj)gill //22 using an equation different from Eq. (2.8). Hereafter any

member of this family of dissipative extensions of the a scheme will be referred to as
an a' scheme. Among the a' schemes is one (referred to as the a-a scheme) which is
among the simplest and yet capable of handling solutions with discontinuities. For
this scheme, (uj)g‘ is evaluated using a finite-difference/weighted-average procedure
which involves a parameter « (see Egs. (2.62), (2.63) and (2.65) in [17]). Note that,
because only Eq. (2.10), but not Eq. (2.6), is satisfied by an a' scheme, the CEs of
an a' scheme are CE(j,n), (j,n) € Q, rather than CEL(j,n), (j,n) € Q.

The a scheme and its extensions described above have been extended to become
solvers of systems of conservation laws in one, two and three spatial dimensions [10—-
12,15,16,20,32]. In particular, the method was extended to two and three spatial
dimensions by using triangles and tetrahedrons, respectively, as the basic building
blocks of the spatial meshes [15,16,32]. In addition, it was also extended to two
and three spatial dimensions by using quadrilaterals and hexahedrons, respectively,
as the basic building blocks of the spatial meshes [20]. As a preliminary for Secs.
3-5, the 1D Euler equations along with the associated CE/SE solvers are briefly
discussed in the following.
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The 1D Euler equations of a perfect gas can be expressed as [11]
Oum  Ofm

ot e
where (i) the conservative flow variables u,,, m = 1,2, 3 are functions of the mass

density p, the fluid velocity v and the static pressure p; and (ii) f,, m = 1,2,3, are
functions of u,,, m = 1,2,3. The integral form of Eq. (2.11) in space-time Ej is

(2.11) =0, m=1,23

(2.12) 7! o -d3 =0, m=1,2,3
S(V)

where f,, = (fm> um), m = 1,2,3, are the space-time mass, momentum, and energy
current density vectors, respectively.

The procedures used to construct the a scheme and its extensions was extended
to construct several 1D Euler solvers [10-12]. For these Euler solvers, the indepen-
dent unknowns at each (j,n) € Q are (un)j and (umz)j, m = 1,2,3. Also, (i) the
Euler version of Eq. (2.9) is

n def AZ
(2.13) (u:_nz)] = T(Umz);l
(ii) the 1D Euler version of the a scheme is constructed using the conservation
conditions
(2.14) % hY -d$=0, and h: -d§=0, m=123
S(CE4(j:n)) S(CE-(j,n))

where H:n is the Euler version of A*; (iii) the 1D Euler version of an a’ scheme
(referred to hereafter as a 1D Euler a’ scheme) is only required to satisfy the less
stringent conservation conditions

(2.15) 7{ B -dg =0, m=1,2,3
S(CE(j,n))

and (iv) the 1D Euler version of the a-a scheme (referred to hereafter as the 1D
Euler a-a scheme), which is defined by Eqs. (4.24) and (4.38) in [11], has also been
shown to be an accurate and robust shock-capturing solver.

3. Generalized Conservation Elements

For any a' scheme, CE(j,n) (see Fig. 2(e)) is a CE. In other words, Eq. (2.10)
is valid if, with the aid of Egs. (2.4), (2.5) and (2.9),

(a) h* at any point on CB and CD is evaluated using u?__ll //22 and (u;}’)]"__l1 //22 ,

(b) h* at any point on ED and EF is evaluated using u;:f //22 and (uj);ill //22 ,
and

(c) h* at any point on AB and AF is evaluated using uf and (uf)7.
However, CE; (j,n) and CE_(j,n) (see Figs. 2(c) and 2(d)) are not CEs of an o
scheme. In other words, Eq. (2.6) is not valid if

(d) R* at any point on AD (which is a part of SE(j, n)) is evaluated using uff

and (u})j.

Assume rules (a)—(c). Then the above discussion implies that, for an a' scheme,
the total flux of h* leaving the boundary of CE_(j,n) vanishes only if we ignore
the rule (d) and instead assume the rule:
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(e) the flux leaving CE_(j,n) through AD is defined to be the value such that
the total flux leaving the boundary of CE_(j,n) vanishes.

Note that, unlike the rule (d), the new rule (e) does not specify i* at each individual
point on AD. The rule (e) only defines a scalar, i.e., the total flux passing through
the entire line segment AD. Because the flux-conservation property of CE_(j,n)
is established by imposing the rule (e), a space-time region such as CE_(j,n) will
be referred to as a generalized conservation element (GCE).

To proceed, without exception hereafter the flux leaving a space-time region A
through an interface separating A and a neighboring region B is assumed to be the
same flux as that entering B through the interface. As an example, the flux leaving
CE_(j,n) through AD is the same flux that entering CE, (j,n) through AD (i.e.,
the flux leaving CE_(j,n) through AD is the negative of the flux that leaving
CE,(j,n) through AD). Then because (i) CE(j,n) is the union of CE_(j,n) and
CE.(j,n), and (ii) CE(j,n) is a CE for any a' scheme, the rules (a)-(c) and (e)
lead to the conclusion that CE4(j,n) is also a GCE for any o' scheme. In fact,
assuming the rules (a)-(c), the flux at AD defined by the rule (e) is identical to
that defined by the rule:

(f) the flux leaving CE, (j,n) through AD is defined to be the value such that
the total flux leaving the boundary of CE, (j,n) vanishes.

At this juncture, note that the concept of GCEs is introduced such that the physical
conservation law Eq. (2.2) can still have a numerical analogue in a space-time region
that is a subset of a CE of any a' scheme.

By using a general rule that is similar to the rule (e), we can define other GCEs
for any a' scheme. As an example, consider Fig. 3(a). Here P denotes any point
on BC (P may coincide with point B or point C). Because the fluxes leaving the
triangle ABP through BP and AB, respectively, can be evaluated using the rules
(a) and (c), one can define the flux leaving ABP through AP to be the value such
that the total flux leaving the boundary of ABP vanishes. With this definition,
ABP becomes a GCE. Because the quadrilateral ABCD, (i.e., CE_(j,n)) is a
GCE, using an argument similar to that was used to establish the equivalence of
the above rules (e) and (f), one concludes that the quadrilateral APCD is also a
GCE. To emphasize the fact that h* at each individual point on either AD or AP
is not specified, AD and AP are denoted by dashed lines in Fig. 3(a). The same
convention will also be used in the rest of this paper.

In a similar fashion, one can divide CE_(j,n) or CE,(j,n) into other combi-
nations of two GCEs (see Fig. 3(b)).

Furthermore, by (i) dividing the quadrilateral APCD (a GCE) in Fig. 3(a)
into two triangles APD and DPC (see Fig. 3(c)), and (ii) defining the flux leaving
DPC through DP to be the value such that the total flux leaving the boundary of
DPC vanishes, one can divide CE_(j,n) into three GCEs, i.e., the triangles ABP,
APD and DPC. In a similar fashion, one can divide CE_(j,n) or CE4(j,n) into
other combinations of three or more GCEs. The discussion of GCEs for any a’

scheme is concluded with the following remarks:

(a) Consider Fig. 4. Let P be an interior point on AD. Because the rule (e)
does not specify the flux passing through AP or PD, one may not assign a
flux on C'P such that the triangle PCD and the quadrilateral ABCP can
be considered as GCEs.
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(b) Consider Fig. 5(a). Let h* be given at every point on BC, CD, DG, and GF
(these line segments are denoted by solid lines). As a result, the flux on BC,
CE, EA, AD, DG and GF are also given. It follows that one can assign
a flux on AB and also a flux on EF such that both the triangle ABC and
the quadrilateral DEFG are GCEs. Because the fluxes at all line segments
that form the boundary of the union of ABC and DEFG are well defined
and the total flux leaving the boundary vanishes, the union is also a GCE.

(c) Consider Fig. 5(b). This figure is identical to Fig. 5(a) except that i* is now
given at every point on AB, BC, DG, GF, and FE. As a result, one can
assign a flux on AC and also a flux on DE such that both ABC and DEFG
are GCEs. However, the question of whether the union of ABC and DEFG
is a GCE is an ill-posed problem because (i) the flux at CE and that at AD
are not uniquely defined, and (ii) CE and AD form part of the boundary of
this union.

Finally, note that the discussions of GCEs given above are applicable to any Euler
version of any a' scheme if R is replaced by each i_i;*n, m = 1,2,3. This fact becomes
apparent if one recalls that Eq. (2.15) is satisfied by any Euler version of any a’
scheme, and also observes that Eq. (2.15), for each m = 1,2, 3, becomes Eq. (2.10)
if ﬁ;“n is replaced by h*.

4. Nonreflecting Boundary Conditions

In this section, several sets of NRBCs for the CE/SE method will be derived
using a nontraditional approach. As a prerequisite, a set of basic concepts will first
be elaborated using a simple initial-value problem as an example.

4.1. Basic Concepts. Consider the initial-value problem defined by Eq. (2.1)
and the initial conditions: at t =0,
v — U, if >0
1V, if z<0
where U and V are two different given constants. For ¢t > 0, the exact weak solution
to this problem is

(4.1)

(4.2)

_J U if z—at>0
YLV i z—at<0

Obviously, the space-time variation of the above solution is solely driven by the
initial-data discontinuity that occurs at = 0.

To construct a corresponding discretized initial-value problem, consider an un-
bounded and uniform space-time mesh formed by the mesh points (j,n) €  with
n > 0 (see Fig. 6). The numerical analogue of the initial conditions Eq. (4.1) can
be expressed as (i)

o [ U if j=1/2,3/2,...
(4.3) Y _{ V, if j=-1/2,-3/2,...
and (ii)
(4.4) W) =0, for j==41/2,43/2,....

Let Q. be the subset of Q with n > 0. Then, for any (j,n) € Qy, v} and (uf)?

can be determined in terms of the above given initial data through the marching of
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a given a’ scheme. Hereafter the solution thus obtained and the associated initial-
value problem will be referred to as Solution I and Problem I, respectively. As in
the case of its analytical counterpart, the space-time variation of Solution I is also
solely driven by the initial-data discontinuity that occurs across the mesh interval
centered at z = 0.

The mesh depicted in Fig. 6 is unbounded. In reality one can only use a
bounded mesh. To proceed, first we shall define several finite subsets of 2. Let

(i) jo > 1 and ng > 0 be given whole integers, and (ii) jj ef Jjo +1/2. Then the
mesh-point set A (jo,no) and its subsets A/, (jo,n0) and A4 (jo,no) are defined as
follows: (i) (4,n) € A+ (jo, o) if and only if (§,n) € 4, |j| < jp and n < ng +1/2
(i-e., A+ (jo,mo) is the set of the mesh points (j,n) depicted in Fig. 7 excluding
those with n = 0); (ii) (j,n) € A/ (jo,no) if and only if (j,n) € Ay(jo,n0) and
7] < Jjb, and (iii) (j,n) € OA4(jo,no) if and only if (j,n) € Ay (jo,no) and [j| = jo.
ObViOUSly A_|_(j0, TL()) = Af’_(.]o, no) @] 8A+(j0,n0).

Next we cosider the initial data defined by (i)

U, if j=1/2,3/2,...,5

0 __ ) 3 ) )

(4.5) Y _{ V, if j=-1/2,-3/2,...,—j
and (ii)

(4.6) wh)y =0, for j==41/2,+3/2,... +j,

Note that u9 and (u})} defined in Egs. (4.5) and (4.6) are identical to those defined
in Egs. (4.3) and (4.4), respectively, in their common domain defined by |j| < jp.
The question arises that, given only the truncated initial data Eqs. (4.5) and (4.6),
is it still possible to obtain a solution in A, (jo,no) that is reasonably close to
Solution I?

To answer the above question, first consider a discrete initial/boundary-value
problem in which the initial data are specified using Eqgs. (4.5) and (4.6), and the
boundary data v} and (uf)7 at all (j,n) € OA (jo,no) are also given. Because, for
any (4,n) € Q, (j,n) and (5 £1/2,n — 1/2) form the stencil of the a’ scheme, one
concludes that, for all (§,n) € A, (jo,n0), u} and (uF)? can be uniquely determined
in terms of the above given initial and boundary data by using the same a' scheme
that was used to generate Solution I. Hereafter, the new solution thus obtained
and the associated initial /boundary-value problem will be referred to as Solution IT
and Problem II, respectively. Obviously, Solution II is dependent on the boundary
data specified on OA; (jo,n¢). By definition, the degree of non-reflectiveness of
the boundary conditions of Problem II will be measured by how closely Solutions
I and II are matched in A/, (jo,n0). In other words, the closer the match the less
reflective these boundary conditions are. In particular, they are said to be perfectly
nonreflecting if the match is perfect.

Next note that, again because of the shape of the stencil of an a' scheme de-
scribed earlier, for Solution I, u} and (u)} at all (j,n) € Ay (jo,no) are completed
determined by the initial data given at the mesh points (4,0), j = £1/2,+3/2,...,
+(jp + no) (see Figs. 6 and 7). As a result, one can see easily that Solutions I
and IT must be identical in A, (jo,n0) if the values of Solution I at OA(jo,n0) are
used as the boundary data for Problem II. In other words, the boundary conditions
formed using these boundary data are perfectly nonreflecting for Problem II. Un-
fortunately, obtaining these boundary data requires solving a problem with a larger
spatial domain, whose size increases as ng increases.
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The key propositions that emerge from the above discussions are:

(a) Any set of NRBCs for Problem IT must meet the requirement that the re-
sulting Solution II more or less matches Solution I in A!, (jo, o).
(b) In constructing any set of NRBCs for Problem II, only the information
extracted from the initial data Eqs. (4.5) and (4.6) can be used.
(c) The values of Solution I'in A, (jo,n0) generally are dependent on some initial
data beyond those given in Egs. (4.5) and (4.6).
It follows from these propositions that construction of NRBCs for Problem II is
possible only if the contribution to Solution T in A, (jo,70) by the initial data u§
and (u})) with |j| > j, somehow can be extrapolated based on the truncated
initial data Eq. (4.5) and (4.6). Fortunately, the existence of such an extrapolation
is supported by the following facts:
(a) Except in the neighborhood |j| < 1/2, the initial data Egs. (4.5) and (4.6) do
not vary in each of the remaining regions 1/2 < j < jp and —jp < j < —1/2.
(b) Not only does the initial data Egs. (4.3) and (4.4) coincide with those of
Egs. (4.5) and (4.6) in their common region |j| < jp, in the region j > jp
(j < —Jb), the former initial data also have the same constant values of those
in the region 1/2 < j < jy (—j» <j < —1/2).

In the following, it will be shown that practical, albeit not perfect, nonreflecting
boundary conditions for Problem II can be constructed using an assumption about
the flux distribution near its spatial boundaries. The exact meaning of this assump-
tion will become completely clear only after its role in constructing NRBCs is shown
explicitly. However the gist of this assumption will be described immediately.

As an example, consider the mesh line j = jp, i.e., the right boundary mesh line
of Problem IT depicted in Figs. 6 and 7. Given Solution I, one can evaluate, from
t = 0 to t = ngAt, the distribution of the space-time flux of R passing through (say
the positive direction is from left to right) the above mesh line and its neighboring
vertical mesh lines. Because the space-time variation of Solution I is solely driven
by an initial-data discontinuity that is located to the left of the mesh line j = jj,
no propagating “solution disturbances” will ever reach this mesh line from its right
side. As a result, one may expect that, for the time interval (0,n¢At), the flux
distribution of Solution I at the mesh line j = j; is not “dependent” on those at
the neighboring vertical mesh lines with j > jp, i.e., it is “dependent” only on those
at the neighboring vertical mesh lines with j < j. In fact one may further assume
that, for the time interval (0,noAt), the flux distribution of Solution I at the mesh
line j = jp is a smooth extrapolation of those at the neighboring mesh lines with
j < j»- Because a set of NRBCs for Problem II is introduced such that the resulting
Solution IT more or less matches Solution I in A, (jo,n0), it follows that Solution II
must possess the same flux extrapolation relation referred to above if the boundary
conditions imposed at the mesh line j = j, are indeed nonreflecting. As will be
shown shortly, the current NRBCs are derived assuming this flux extrapolation
relation. Note that, according to the current line of thinking, a set of NRBCs is
one that allows for the flux to smoothly “stream” out of the spatial boundary from
the interior.

To elaborate further, consider a 1D problem (+00 > 2 > —o0) that is governed
by Eq. (2.1). For such a problem, solution disturbances propagate to the right
(left) with a constant speed if a > 0 (a < 0). As a result, no solution disturbances
will ever reach the mesh line j = j, from its right side if the initial sources of
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disturbance are located to the left of the mesh line. In contrast, for a more complex
problem such as that involving a 1D subsonic Euler flow, (i) disturbances emitted
from any source, relative to the stationary computational frame, can propagate in
both the right and left directions; and (ii) any disturbance itself is a new source
of disturbance. As a result, for such a flow, solution disturbances that originate
from a source that is located to the left of the mesh line j = j; can propagate into
the region to the right of the mesh line and from there propagate back to the same
mesh line. In the current construction of NRBCs, the effect of this “back scattering”
phenomenon on the flux distribution along the mesh line j = j; is assumed to be
negligible. Generally speaking, the last assumption is valid if the mesh point (0, j5)
is located at a large distance from the nearest initial source of disturbance (such
as in the current case in which by assumption j, > 1, and the initial source of
disturbance is located around j = 0).
This subsection is concluded with the following remarks:

(a) The above discussions make it clear that, strictly speaking, NRBCs for a
discretized initial/boundary-value problem are not well-defined unless its
solution can be compared against that of another problem with a space-
time domain containing that of the original problem.

(b) Conceptually, the reflecting boundary conditions that are imposed on a solid
wall are exactly opposite to the NRBCs discussed above. Obviously, the
mass flux cannot smoothly “stream” into a solid wall.

(¢) In the following subsections, the concept of GCEs introduced in Sec. 3 will
be used in the construction of several sets of NRBCs which are applicable to
any a' scheme. Before proceeding to construct these conditions, the reader
again is reminded of the convention that any part of the boundary of a GCE
on which A* is not specified at each individual point is denoted by a dashed
line (see Fig. 4).

4.2. The First and Second Sets of NRBCs. The boundary mesh lines
with j = +j, that appear in Figs. 6 and 7 along with some of their immediately
adjacent interior mesh lines are depicted in Fig. 8. In this figure, the points of
intersection between these vertical mesh lines and any horizontal nth time-level
line, respectively, are denoted by Ay, By, Cy, Dy, A}, B;,C and D;, where { = 2n.

Furthermore, for each £ =0,1,2,..., points P, Q,, P, and @, respectively, are on
the line segments B,Cy, C¢ Dy, B,C} and C};Dj with
(4.7
- AT PN J— P J— AT
P =252, (Ol = (-0 B =X @ = -3
Here A and ) are adjustable parameters with 0 < A, X' < 1. Obviously |P,Q¢| =
|P,Q}| = axz/2. Furthermore, because |BC;| = |C¢D;| = ax/2, one concludes
that, for £ = 0,1,2,..., points P, and @y, respectively, coincide with (i) points

By and Cy if A = 1, and (ii) points Cy; and D, if A = 0. As a result, as long as
0 < X< 1, for each £ = 0,2,4,..., the interior of P;Q, lies entirely within the
solution element associated with point Cy. Obviously the above conclusions also
hold if points Py, Q¢, By, C¢; and Dy, and the parameters A are replaced by points
P, Q}, B;, Cy and D}, and the parameter X', respectively.

According to the discussions given in Sec. 3, for any £ = 0,1, 2,..., the rectan-
gles A¢A¢y1B1 By, PePri1Ce1Ce, CoCry1Quin Qe, AyAyy 1 Biyy By, PPy Cy 1 G
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and C;Cy,,Qy, Q) can be considered as GCEs. As a result, the union of any com-
binations of these GCEs is also a GCE. As an example, for any ¢ = 0,2,4,...,
the rectangle AgAs2Byy2By is a GCE. To proceed, for any £ = 0,2,4,..., let (i)
F(A;A13) denote the flux of A* entering the vertical line segment Ay A, 5 from
the left, and (ii) F(A;B;) denote the flux of h* entering the horizontal line segment

AyBy from below. Hereafter, similar notations will be used to denote the fluxes
passing through other vertical and horizontal line segments. The simplest NRBCs

at the boundary mesh line j = j; will be constructed by assuming the simplest flux
extrapolation condition, i.e.,

(4.8) F(A A ) = F(BiByy2), £=0,2,4,...

Because the rectangle AyAyi2By2By is a GCE, we have
(4.9) F(AgAg+2) - F(B[B[+2) + F(A[J’_QB[J'_z) - F(Ang) =0, £=0,2,4,....

Combining Eqs. (4.8) and (4.9), one concludes that

(4.10) F(Ap12Boi2) = F(ABy), £=0,2,4,...
As a result,
(4.11) F(AyBy) = F(AoBy), £=2,4,6,...

With the aid of Egs. (2.4), (2.5) and (2.9), and recalling that the length of each
A¢By is Az/2, it can be shown that Eq. (4.11) is equivalent to

(4.12) qu_(u—w‘r)Az :uAO—(uj)AO, 522,4,6...

where ua, and (u})a,, £ =0,2,4,..., denote the mesh values of v and u} at point
Ay, respectively. Note that: (i) hereafter similar notations will be used to denote
the mesh values of u and u} at other mesh points; and (ii) according to Eq. (2.9),
(u})a, and (u])a, are quantities of first-order in Az. Also note that, by using a
similar approach, it can be shown that the counterpart to Eq. (4.12) for the left
boundary is

(4.13) uf“z-i-(’LL-zi_)A/Z =uA6+(u;")A6, {=2,4,6,...

Let the initial data w4, and (u})a, be given. Then, for each ¢, there are only
two unknowns, i.e., the boundary data u4, and (u})a,, in Eq. (4.12). As a result,
after imposing Eq. (4.12), there is still one degree of freedom left in choosing the
two unknowns. To obtain the simplest boundary conditions, the degree of freedom
is removed by further assuming that the zero-order term and the first-order term
on the left side of the equality sign in Eq. (4.12) are equal to those on the right
side, respectively. Thus one has

(4.14) ua, =ua, and (ul)a, = (ul)a, £=2,4,6,...
Similarly, the counterpart to Eq. (4.14) for the left boundary is
(4.15) ug, =ugy and (u:)Az = (uj)Ag £=246...

Note that, even though it is counter-intuitive, it will be shown in Sec. 5 that the
Euler counterparts of the steady-state boundary conditions Egs. (4.14) and (4.15)
turn out to be a set of reasonably good NRBCs. Hereafter Eqgs. (4.14) and (4.15)
will be referred to as the first set of NRBCs.
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A set of more advanced NRBCs will be constructed assuming
(4.16) F(AyAp2) — F(B¢Byya) = F(PiPpya) — F(QiQey2), £=0,2,4,...

Note that, because (i) the line segments A, Ay o, BiByya, PiPpio, and QQ 2 have
the same length (i.e., At), and (ii) the horizontal distance (i.e., Az/2) that separates
the line segment Ay Ayi1o and ByByyo is identical to that which separates the line
segments PyPpio and QQ42, Eq. (4.16) represents a linear flux extrapolation
relation. Also, because the rectangles Ag Ay 2ByoBy and Py Ppy2Q12Q ¢ are GCEs,
we have Eq. (4.9) and

(4.17) F(PiPry2) — F(Q:Qey2) + F(Pri2Qey2) — F(PiQr) =0
for £=0,2,4,.... With the aid of Eqs. (4.9) and (4.17), Eq. (4.16) implies that
(4.18)  F(Ag42Bei) — F(Pey2Qer2) = F(ABy) — F(PQe),  £=0,2,4,...
As a result,
(4.19) F(A¢B;) — F(P,Q;) = F(AoBoy) — F(PoQo), (=2,4,6,...
With the aid of Egs. (2.4), (2.5), (2.9) and (4.7), it can be shown that Eq. (4.19) is
equivalent to
(4.20) (ua, —uc,) — [(Wh)a, + (@A = 1) (u)c,]

= (udo —uc,) = [(uF) 4, + (22 = 1)(u7)c,]

where £ = 2,4,6,.... Similarly, the counterpart to Eq. (4.20) for the left boundary
is
(4.21) (qu — ucé) + [(UI)AZ + (2N =1) UI)CE]
= (uay —ucy) + [(w)ag + N = D (u}) e ]
where £ = 2,4,6,.... To proceed, note that Eqs. (4.5) and (4.6) coupled with the
assumption j, > 1 imply that ua, = uc, = U, ua, = ugy = V and (u})a, =
(uf)co = (uf)ay = (uf)cy = 0. As a result, the expressions on the right sides of
Egs. (4.20) and (4.21) vanish.

Let the parameter A be given. Then because the Cy is an interior mesh point
at the (£/2)th time level (recall that n = £/2), uc, and (u})c, can be evaluated
using the known marching variables at the ((¢ — 1)/2)th time level. Thus one
concludes that, for each £, there are only two unknowns, i.e., the boundary data
ua, and (u})4, in Eq. (4.20). As a result, after imposing Eq. (4.20), there is still
one degree of freedom left in choosing the two unknowns. To obtain the simplest
NRBCs possible, the degree of freedom is removed by further assuming that the

sum of the zero-order terms and that of the first-order terms on the left side of
Eq. (4.20), respectively, are equal to zero. Thus one has

(
(

(4.22) uq, =ug, and (ul)a, = (1 —2))(u})c, £=2,46,...
Similarly, the counterpart to Eq. (4.22) for the left boundary is

(4.23) ugr =ucr and  (uf)a, = (1—2N)(uf)er £=24,6,...
Note that, because 1 > A\, X > 0,

(4.24) 1> (1—2X),(1—2)\)> -1

Hereafter Eqs. (4.22) and (4.23) will be referred to as the second set of NRBCs.
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4.3. The Third Set of NRBCs. The points Ay, By, C¢, A}, B; and C,
£=0,1,2,..., that are depicted in Fig. 9 are identical to those depicted in Fig. 8.

Furthermore, for each £ =0,1,2,..., points R, S¢, R, and S}, respectively, are on
the line segments A¢B,, B;Cy, A} B; and B;C}, with
(4.25)

AT AT
27 2
Here A and ) are adjustable parameters with 0 < A\, )’ < 1. Obviously |R,S| =
|R,S}| = az/2. Furthermore, because |4,B;| = |B,C¢| = az/2, one concludes that,
for £ =0,1,2,..., points R, and Sy, respectively, coincide with (i) points A, and
By if A =1, and (ii) points By and C; if A = 0. As a result, as longas 0 < A < 1,
for each £ = 1,3, 5, ..., the interior of RyS, lies entirely within the solution element
associated with point By. Obviously the above conclusions also hold if points Ry,
St, A, B and Cy, and the parameters \ are replaced by points R), S;, A}, B and
C}, and the parameter X', respectively.
The third set of NRBCs will be constructed assuming

(4.26) F(A¢Aer2) — F(BiBiya) = F(Ry—1Re11) — F(Se-1841), €=2,4,6,...

- AT S _ AT ——
BBl =\, [BS= (-5, [EB)=N5, [BS)=(1-X)

Note that, because (i) the line segments Ay Ayt o, BeByy2, Re—1Rer1, and Sp—1Se11
have the same length (i.e., at), and (ii) the horizontal distance (i.e., Az/2) that sep-
arates the line segment A, Ay 2 and By By, is identical to that which separates the
line segments Ry_1Rey1 and Sy_1S¢11, Eq. (4.26) represents a linear flux extrapo-
lation relation. Also because the rectangles A A 2Bpi2By and Ry—1Rp115¢4150-1
are GCEs, we have Eq. (4.9) and

(4.27) F(Ry_1Ryt1) — F(S¢—1Se41) + F(Rp41Se+1) — F(Ry—1S¢—1) =0
for £ =2,4,6,.... With the aid of Egs. (4.9) and (4.27), Eq. (4.26) implies that
(4.28)

F(Ai12Be4) — F(Rez18ei1) = F(ABy) — F(Ri1501), £=2,4,6,...
As a result,
(4.29)  F(AB;) — F(Ri_1S-1) = F(A3Bs) — F(R181), £=4,6,8,...
With the aid of Eqs. (2.4), (2.5), (2.9), and (4.25), it can be shown that Eq. (4.29)

is equivalent to
(430) (uAe - uBl—l) - [(u_m'_)Az + (2)‘ - 1)(“:)52_1] = (qu - uBl)
- [(UI)A2 +(2)‘_ 1)(“:)31] ) 62476;83---

Similarily, the counterpart to Eq. (4.30) for the left boundary is

(431)  (ua, —up;_,) + [(UI)A; +(2X - 1)(“3)3;_1] = (uay, —upy)
+ @), + N = D)) ], €=4,63,...

To proceed, note that: (i) Egs. (4.3) and (4.4) coupled with the assumption j, > 1

imply that, for Solution I,

(4.32) u? =U and (uh)?=0, J=JnJpx1

z/j
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n—1/2

and (ii) each a’ scheme has the property that, for any (j,n) € Q, u] =u i41)2 and
(ui)} = 0if u)” 11//22 = u]";f/; and (u;f);‘;f//; = 0. As a result, for Solution I,

U2 4n1/2
(4.33) Uty =U and (uf )Jbil/2 0
and

1_

(4.34) uj, =U and (uf)],
Because, in Figs. 8 and 9, the mesh points (j, — 1/2, 1/2) and (jp, 1) are denoted

by B; and A,, respectively, Eqs. (4.33) and (4.34) imply that, for Solution I,

(4.35) ua, =up, =U and (ul)a, = (u})p, =0
Similarly, it can be shown that, for Solution I,
(4.36) ug, =up; =V and (uj)Al2 = (u;_)B/1 =0

It will be assumed that Eqs. (4.35) and (4.36) are also valid for Problem II. As a
result, the expressions on the right sides of Eqs. (4.30) and (4.31) vanish.

Let the parameter A and the marching variables ug,_, and (u})gp,_, (which
are associated with a lower time level) in Eq. (4.30) be given. Then, for each
{ = 4,6,8,..., there are only two unknowns, i.e., the boundary data was, and
(u})a, in Eq. (4.30). As a result, after imposing Eq. (4.30), there is still one degree
of freedom left in choosing the two unknowns. To obtain the simplest NRBCs, the
degree of freedom is removed by further assuming that the sum of the zero-order
terms and that of the first-order terms on the left side of Eq. (4.30), respectuively,
are equal to zero. Thus one has

(4.37) ua, =up,_, and (u})a, =1 -2\ (u})s,_, £=2,4,6,...
Similarly, the counterpart of Eq. (4.37) for the left boundary is

(4.38) ugar =up;_ and (uf)a =(1=2X)(ul)p_,  £=2,4,6,...
Note that: (i) obviously Eq. (4.24) must also be observed here; and (ii) hereafter
Egs. (4.37) and (4.38) shall be designated as the third set of NRBCs.

4.4. The Fourth Set of NRBCs. Each of the three sets of NRBCs intro-
duced above represents only the simplest among many possible combinations of
boundary conditions that are consistent with the associated flux extrapolation con-
ditions. As an example, instead of using the simplest approach described in Sec. 4.2,
nonuniqueness involving Eqgs. (4.20) and (4.21) can also be removed by assuming
that, for £ = 2,4,6....,

(4.39) wa, =uc, +az(uz)c, and wa, =uc; — Az(ug)cy, £=24,6,...

Le., ug, and uy, are related to uc, and uc;, respectively, by the first-order Tay-
lor’s expansion. Combining Eqgs. (4.20), (4.21), and (4.39), and the fact that the
expressions on the right sides of Egs. (4.20) and (4.21) vanish, it can be shown that

(4.40)
(Wh)a, = 6-20@h)e, and (uh)a, = (5-2X)(uh)ey,  £=2,4,6,...

Eqgs. (4.39) and (4.40) shall be designated as the fourth set of NRBCs. Note that,
because 1 > X, )’ > 0, one has

(4.41) 5> (5—2X),(5—2\)>3
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4.5. Remarks and Extensions. This section is concluded with the following
comments:

(a) To simplify discussion, it is assumed in Egs. (4.3)—(4.6) that the initial source
of disturbance is a single discontinuity which is at a reasonable distance away
from the mesh points (0, £7,). However, according to the logic of the current
development, the NRBCs derived here are still valid even if the discontinuity
is replaced by a source region of finite extent as long as this source region is
kept at a reasonable distance away from any nonreflecting boundary.

(b) With the aid of Egs. (2.11)=(2.15) and the related remarks, the develop-
ment presented in this section can be extended to the 1D Euler case in a
straightforward manner. Specifically, in the Euler development, (i) Eq. (2.1)
is replaced by Eq. (2.11); (ii) Egs. (4.1) and (4.3)—(4.6), respectively, are re-
placed by their Euler versions that, respectively, are identical to these equa-
tions except that u, u‘}, (uj)g, U, and V respectively, are replaced by u,,
(um)?, (u)3, Um, and Vi, where m = 1,2,3, and Uy, and Vp,, are two
different constants for each m; (iii) the exact solution given in Eq. (4.2) is
replaced by its Euler version, i.e., the Riemann solution [41, p. 181]; and
(iv) the condition 0 < A, X' < 1 is again assumed. Using the new definitions
given in the above item (ii), one can proceed to define the Euler versions of
Problems I and II, and Solutions I and II. Obviously, (i) by replacing the
symbols u and u} with (u,,) and (u},), respectively, the NRBCs and (u,),
respectively, the NRBCs Eqgs. (4.12)—(4.15), (4.20)—(4.23), (4.30), (4.31), and
(4.37)—(4.40) will become their Euler versions, respectively. Note that here-
after the Euler version of an equation such as Eq. (4.3) will be denoted by
Eq. (E-4.3).

(c) Consider the 1D Euler case. Because m = 1,2,3, each of Eqs. (E-4.12),
(E-4.13), (E-4.20), (E-4.21), (E-4.30), and (E-4.31) represents a set of three
conditions involving six unknowns. Thus, after imposing any one of these
equations at a boundary mesh point (j, n), there are still three degrees left in
specifying (un)} and (u},)?. The several approaches used here to eliminate
these degrees of freedom represent only a small subset of all possible options.
It is conceivable that, by using other options, one may be able to construct
a set of NRBCs that also meet some extra given conditions at the boundary.

5. Numerical Results

In this section, the Euler versions of the four sets of NRBCs developed in Sec. 4
will be validated numerically. Because only the Euler versions are considered here,
in this section a phrase such as “the Euler version of Problem I” will be abbreviated
simply as “Problem I”.

The 1D test problem to be specified shortly is an extended Sod’s shock tube
problem. It is the original Sod’s problem [42] with the additional complication of
imposing NRBCs at the two open ends of the shock tube. Note that the flow under
consideration contains a shock wave and a contact discontinuity, and, relative to
the computational frame, is subsonic throughout (the values of Mach number range
from 0 to 0.93). It is well known that implementing NRBCs for a subsonic flow is
much more difficult than doing the same for a supersonic flow. This difficulty is
further exacerbated by the fact that most established NRBCs are derived assuming
a continuous flow—which is not valid for the current case. In this section, each of

NASA/TM—2003-212495/REV1 16



the four sets of NRBCs developed in Section 4 will be validated by comparing the
resulting numerical solutions against the exact analytical solutions for a period of
time that ends only after the shock wave and contact discontinuity have exited the
computational domain.

To proceed, let the meshes used by Problems I and II, respectively, be those
depicted in Figs. 6 and 7 with At = 0.004, Az = 0.01 and jo = 50. Thus, for
Problem II, j, = 50% and —0.505 < z < 0.505. In addition, it is assumed that:
(i) the specific heat ratio v = 1.4; (ii) both Solutions I and II are obtained using
the 1D Euler a-a scheme with @ = 1; and (iii) the initial conditions at ¢ = 0 for
Problem I (Problem II) are Eqs. (E-4.3) and (E-4.4) (Egs. (E-4.5) and (E-4.6)) with
(Uy,Us,Us) = (0.125, 0, 0.25) and (V,V5,V3) = (1, 0, 2.5). For both Solutions I
and I, the above assumptions imply a Courant number C'F'L ~ 0.88 where CF'L is
defined to be the maximal numerical value of of (|v| + ¢)Aat/Az with v and ¢ being
the local velocity and sonic speed, respectively. Note that stability of the 1D Euler
a-a scheme generally requires CFL < 1 and a > 0.

Moreover, by using (i) Fig. 6; (ii) Eqs. (E-4.3) and (E-4.4); and (iii) a property
of the 1D Euler a-a scheme, i.e., for any (j,n) € Q, (un)} = (um)?;ll//; and

()7 = 0if (um)i 775 = (um)yy /s and (uf,) 02 = 0, it can be shown that,
for Solution I,

(5.1) (Um)} =Up and (uh,)] =0 if j>n
and
(5.2) (Um)] =Vm and (uf,)} = if j<-n

In other words, the impact of the initial discontinuity is felt only in the mesh region
|7] < n (note: |j| # n if (j,n) € Q). Because j, = jo + 1/2, Egs. (5.1) and (5.2)

imply that

(5.3) (um)}j, = Un and (u%m)]"b =0, n=0,1,2,...,j

and

(5.4) (um)"j, =V and  (uf,)";, =0, n=0,1,2,...,%
respectively. Furthermore, because (i) n = £/2, (ii) (um)a, = (um)g-'b = Un

and (uf,,)a, = (uf,)9, = 0, and (iii) (um)ay = (um)?;, = Vin and (uf,)ar
(ufz)2;, = 0, a comparison of Eqs. (E-4.14) and (E-4.15) with Egs. (5.3) and (5.4)
reveals that, for n = 0,1,2,..., jo, the boundary values at the mesh lines 7 = £j,
specified using the first set of NRBCs are identical to those specified using the so-
lution values of Solution I. According to a discussion given in Sec. 4.1, this implies
that Solution II coincides with Solution I at all mesh points (j, n) with |j] < j, and
0 < n < jo if the boundary values of Problem II are specified using the first set of
NRBCs. Note that, given any pair of the values of A and X', one can also show that:
(i) Solution II coincides with Solution I at all mesh points (j,n) with |j| < jp and
0 < n < jo if the third set of NRBCs is used; and (ii) excluding the two boundary
mesh points with j = £35, and n = jj, Solution II coincides with Solution I at all
mesh points (j,n) with |j| < j, and 0 < n < jp if the second or the fourth set of
NRBCs is used.

Because jo = 50 and at = 0.004, t = nat = 0.2 when n = jy. As a result,
the above discussions imply that, within their common spatial domain, Solution
IT should be identical to Solution I in the time interval 0 < ¢ < 0.2 if the first or
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the third set of NRBCs is used. Also, except for the two boundary mesh points
mentioned above, the above conclusion also applies if the second or the fourth set
of NRBCs is used. Note that, in reality, the differences between Solutions I and IT
are completely negligible at the two exceptional boundary mesh points.

At t = 0.2, Solution IT generated using the first set of NRBCs is shown in
Fig. 10(a). In this figure, the numerical values (marked by triangles) of the density,
the velocity and the pressure are compared with the exact solutions (marked by
solid lines). As expected from the discussions given in the last paragraph, at ¢ =
0.2, Solution IT generated using any one of the other three sets of NRBCs is also
represented by the same results shown in Fig. 10(a). Note that, at ¢t = 0.2, the waves
and shocks generated in the interior have not yet reached the boundaries. Also it
is seen that the agreement between the numerical results and the exact solutions is
excellent. In particular, the shock discontinuity is resolved almost within one mesh
interval, and the contact discontinuity is resolved in four mesh intervals. Also, there
are only slight numerical overshoots and/or oscillations near these discontinuities.

At t = 0.4, Solution IT generated using the first set of NRBCs is shown in
Fig. 10(b). It is seen that, by this time, the shock wave has passed cleanly through
the right boundary. There is good agreement between the numerical solutions and
the exact solutions everywhere in the interior except for a slight disagreement in
the vicinity of the right boundary. Note that the right boundary values, which do
not vary with time and are no longer identical to the values of Solution I there
at t = 0.4, are discontinuous with respect to the neighboring interior values. The
numerical results at ¢ = 0.6 are shown in Fig. 10(c). As seen from the density
profile, by this time, the contact discontinuity has also passed through the right
boundary. Agreement between the numerical solutions and the analytical solutions
continues to be good in the interior. However, both left and right boundary values
are now discontinuous with respect to the neighboring interior values.

At t =0.2,0.4, 0.6, solution IT generated using the third set of NRBCs with A =
A’ = 0 are shown in Figs. 10(a), 11(a) and 11(b), respectively. The agreement with
the exact solution is excellent everywhere. In particular, unlike the case associated
with the cruder first set of NRBCs, agreement between the numerical and exact
solutions at t = 0.4 and t = 0.6 are quite good for the current case even at the right
boundary. Note that the use of other values of A and X' in the range 0 < A, N <1
yields almost identical numerical results.

To give the reader a concrete idea about the simplicity of the CE/SE method in
general and the current NRBCs in particular, the self-contained Fortran program
which is used to generate the results depicted in Figs. 10(a), 11(a) and 11(b) is
listed in Appendix. In this program, the input and output include: (i) nx = 27
= the number of total mesh intervals at the Oth time level, (ii) it = the number of
total marching steps (each marching step advances a time period of At/2), (iii) dt
= At, (IV) dx = az, (V) (u17u27u3) = (U17U27U3)7 (VI) (V1>V27V3) = (‘/17‘/27‘/3)7
(vii) cr = 1 — 2, (viii) ¢l = 1 —2X, (ix) ia = @, (x) rho = mass density, (xi)
v = fluid velocity, (xii) p = static pressure, and (xiii) M = Mach number. Note
that (1 —2X) and (1 — 2)") are the factors that appear in Egs. (4.37) and (4.38),
respectively. Thus, according to Eq. (4.24), 1 > cr, cl > —1.

Solution IT also has been generated using the second and the fourth sets of
NRBCs with different values of A and X'. At ¢t = 0.2,0.4, 0.6, the numerical results
thus obtained are virtually indistingushible (at least visually) from those shown in
Fig. 10(a), 11(a) and 11(b) for all A and X’ in the range 0 < A\, N < 1.
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Note that the second, the third and the fourth sets of NRBCs were derived
assuming 0 < A\, X < 1. As a result, breakdown of these NRBCs is expected if the
values of A and )\ used fall outside of the range 0 < A, X' < 1. As an example,
consider the fourth set of NRBCs with A = A’ = 2. For this special case, Egs. (E-
4.39) and (E-4.40) can be rearranged as

(5.5) (um)a, = (um)c, + A%(Umz)c, and  (umz)a, = (Upq)c,

and

(5.6) (um)ay, = (um)cy — Az(Umz)er and  (uh,)ar = (uhy) o

where m = 1,2,3 and £ = 2,4,6,.... Because (i) (un)a, and (un)4, are related

to (um)c, and (um)cy, respectively, by the first-order Taylor’s expansion; and (ii)
(wt)a, and (ut )4, simply assume the values of the corresponding variables at
the neighboring mesh points C; and Cj, respectively, these boundary conditions
certainly look “reasonable”. As explained earlier, at ¢ = 0.2, Solution II gener-
ated using Eqgs. (5.5) and (5.6) is again represented by those shown in Fig. 10(a).
However, at t = 0.4 (see Fig. 12), Solution II generated using these “reasonable”
boundary conditions has become highly reflecting at the right boundary.

6. Conclusions and Discussions

In this paper, we first review the CE/SE schemes for the 1D advection equation
Eq. (2.1) and those for the 1D Euler equations Eq. (2.11). The concept of a general-
ized conservation element was then developed, paving the way for the development
of flux-based NRBCs.

Four sets of simple NRBCs for the advection equation were developed on the
basis of extrapolation of fluxes at the boundaries. No characteristics-based tech-
niques were used in the development. The Euler versions of these NRBCs were
developed in a similar manner and tested with the 1D Euler a-a scheme. The test
problem used is an extension of the original Sod’s shock-tube problem in which
extra NRBCs are imposed at the two open ends of the shock tube.

The first set of Euler NRBCs is the simplest and represents a set of steady-
state boundary conditions. It was truly remarkable that this set of NRBCs yielded
numerical solutions that were in good agreement with the exact weak solution in
the interior of the computational domain, even after the prescribed steady-state
boundary values had deviated completely from those associated with the exact
solution.

It was also shown that the more advanced second, third and fourth sets of Euler
NRBCs yielded numerical solutions that were in even better agreement with the
exact weak solution—if the values of the adjustable parameters A and A’ used in
these NRBCs fell within the allowable range 0 < A, A’ < 1. However, as shown by
a numerical example, strong spurious reflections from a boundary may occur if the
values of A and X\’ chosen fall outside the allowable range.

Finally note that it has been shown numerically [19,21-28] that the multidi-
mensional extensions of the current Euler NRBCs are also equally simple, effective
and robust. In particular, the reader is referred to [19] for a rigorous discussion
of the investigation of several classes of flow problems using a 2D CE/SE Euler
solver [15] in conjunction with a 2D extension of the present 1D Euler NRBCs.
The classes of problems considered include (i) acoustic pulse, entropy wave, and
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vorticity wave propagation, (ii) free shear-layer instability, and (iii) multiple inter-
actions of a strong vortex and strong oblique shocks. The major conclusions of this
investigation are:

(a) The (second-order) 2D CE/SE solver is efficient and yields high resolution,
low dispersion results similar to those of higher-order conventional schemes
[4-6].

(b) The novel 2D CE/SE NRBCs used are easy to implement and remove the
need for (or mimimize the size of) a buffer zone.

(c) The 2D CE/SE solver is capable of handling both continuous and discon-
tinuous flows and, thus, provides a unique numerical tool for flow situations
where sound waves and shocks and their interactions are important, such as
the jet screech noise problem.

Appendix: A Solver for An Extended Sod’s Shock-Tube Problem

implicit realx8(a-h,0-z)

dimension u(3,999), un(3,999), ux(3,999), ut(3,999),
* 5(3,999), uxl(3), uxr(3), xx(999)

data nx/101/,it/100/,ia/1/,dt/.4d-2/,dx/.1d-1/,ga/1.4d0/,
% ul,u2,u3/.125d0,0.d0,.25d0/,v1,v2,v3/1.d0,0.d0,2.5d0/,
* cr,cl/1.d0,1.d0/

c nx must be an odd integer
c
nxl =nx +1
nx2 = nx1/2
hdt = dt/2.d0
tt = hdtxdfloat(it)
qdt = dt/4.d0
hdx = dx/2.d0
qdx = dx/4.d0
dtx = dt/dx
al =ga-1.d0
a2 = 3.d0 - ga
a3 = a2/2.d0
a4 = 1.5d0=al
dob5j=1nx2
u(1,j) = vl
u(2,j) = v2
u(3,j) =v3

(

(
u(1,nx2+j) = ul
u(2,nx2+j) = u2
u(3,nx2+j) = ul
dob5i=1,3
ux(i,j) = 0.do
ux(i,nx2+j) = 0.d0
continue

open (unit=8 file="for008’)
write (8,10) tt,it,ia,nx
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100

120

150

200

300
400

*

*

*

write (8,20) dt,dx,ga
write (8,30) ul,u2,u3,cr
write (8,40) v1,v2,v3,cl

do 400 i = 1,it
m = nx +i- (i/2)%2
do100j = 1,m

w2 = u(2,j)/u(1)
w3 = u(3,j) /u(L)
21 = -a3*w2%x2
22 = a2+«w2
31 = al*w2xx3 - gaxw2+w3
32 = gasxw3 - adxw2xx2
133 = gaxw2
ut(1) = -ux(2,)
ut(2,j) = -(f21xux(1,j) + f22%ux(2,j
ut(3,j) = -(f31xux(1,j) + £32xux(2,j
s(L1,j) = qdxrux(Lj) + dtxx(u(2,)
8(2,j) = qdxxux(2,j) + dtx*(f21*(u 1,j) + qdtxut(1)) +
£22%(u(2,j) + qdt*ut(2,j)) + alx(u(3,j) + qdt*ut(3,j)))
5(3,j) = qdxxux(3,j) + dtx*(f31x(u(1,j) + qdtxut(1,j)) +
f32%(u(2,j) + qdtxut(2,))) + £33x(u(3,)) + qdtxut(3,j)))
continue
if (i.ne.(i/2)%2) goto 150
do 120k = 1,3
ux(k,1)= cl*ux(k 1)
ux(k,nx1) = crxux(k,nx)
un(k,1) = u(k,1)
un(k,nx1) = u(k,nx)
continue
Jl=1-i+ (i/2)%2
mm=m- 1
do 200 j = 1,mm
do 200k = 1,3
un(k,j+jl) = 0.5d0x(u(k,j) + u(k,j+1) + s(k,j) - s(k,j+1))
uxl(k) = (un(k,j+jl1) - u(k,j) - hdtxut(k,j))/hdx
uxr(k) = (u(k,j+1) + hdt*ut(kﬂ+1) un(k,j+j1))/hdx
ux(k,j+j1) = (uxl(k)*(dabs(uxr(k)))**ia + uxr(k)*(dabs(uxl(k)))
xxia) /((dabs(uxl(k)))*+ia + (dabs(uxr(k)))=xia + 1.d-60)
continue
m =nx1 -1+ (i/2)%2
do300j=1m
do 300k = 1,3
u(lc) = un(k)
continue
continue

i) + alxux(3,j))
j) + £33xux(3,j))
?— qdt*ut(2 ,_]))

m = nx1 - it + (it/2)*2
mm=m-1
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xx(1) = -0.5d0xdx*dfloat(mm)
do 500 j = 1,mm
xx(j+1) = xx(j) + dx
500 continue
do 600 j=1m
x = u(2,j)/u(ly)
y = al*(u(3,j) - 0.5d0xx*x2xu(1,j))
z = x/dsqrt(gaxy/u(L,j))
write (8,50) xx(j),u(Lyj)x,y.2
600 continue

close (unit=8)
10 format(’ t = ’,£8.4, it = *)i4, ia = ’i4,” nx = ’,i4)
20 format(’ dt = ’,f8.4, dx = ’,f8.4, gamma = ’,{8.4)
30 format(’ ul = ’,f8.4, u2 = 8.4, u3 = ’,f8.4, cr = ’,{8.4)
40 format(’ vl = ’f8.4, v2 = "f8.4, v3 = ’8.4, cl = ' f8.4)
50  format(’ x =',f8.4, rho =",8.4, v =’ f8.4, p ='f8.4,

« M ='{84)
stop
end
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